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We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the
time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like
cracks found within a homogeneous space R2. The algorithm is based on a factorization
of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero fre-
quency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Trans-
verse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a
MUSIC cost functional expected to exhibit peaks along the crack curves each half a wave-
length. Numerical experimentation from exact, noiseless and noisy data shows that this is
indeed the case and that the proposed algorithm behaves in robust manner, with better
results in the TM mode than in the TE mode for which one would have to estimate the nor-
mal to the crack to get the most optimal results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction
The time-harmonic inverse scattering from an open, smoothly shaped arc in two-dimensions which is satisfying a Dirich-
let boundary condition has been investigated in depth in [18]. In this paper, the integral equation over the arc is first used to
prove the existence and uniqueness of the solution and to compute it by developing a rigorous Nyström solution method.
Then, the retrieval of the arc itself is carried out via a Newton-type iterative scheme. This approach works as well for a Neu-
mann inverse scattering problem, using the material proposed in [19] on the direct problem in this case, and one then refers
to [20].

Yet, for successful application of such solution schemes, a good initial guess is needed, hopefully close enough to the un-
known scatterer. Without it, one might suffer from large computational costs, with the risk of non convergence also. More-
over, such iterative schemes require calculation of the Fréchet derivative of the far-field operator and call for regularization
terms that are expected to depend on the specific problem at hand, and whose proper choice involves a good degree of
numerical experimentation.

In the present contribution, we choose to focus onto an imaging algorithm which provides in one single step and with the
least amount of calculation the shape of a perfectly conducting crack (arc-like) from the scattered far-field patterns observed
when a finite number of time-harmonic, single-frequency plane waves are impinging upon it. Let us emphasize that, even
though the shape which the present algorithm yields does not guarantee us a full retrieval of the crack, this limitation being
in accord with the Rayleigh criterion, it might provide at least a good initial guess of further, more elaborate iterative pro-
cedures of imaging.
. All rights reserved.
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Fig. 1. Illustration of a two-dimensional arc-like crack C.

8094 W.K. Park, D. Lesselier / Journal of Computational Physics 228 (2009) 8093–8111
The analysis is led in a two-dimensional setting in both standard electromagnetic polarization cases, the Transverse Mag-
netic (TM) one for which a Dirichlet boundary condition is holding on the crack, and the Transverse Electric (TE) for which a
Neumann boundary condition is holding on it, being emphasized that the imaging algorithm works as well for multiple, non-
intersecting cracks, and in fluid acoustics.1 In effect, the algorithm is simply based on a factorization of the far-field Multi-Static
Response (MSR) matrix (deduced from the far-field patterns) followed by the calculation of a MUSIC cost functional the map of
which is expected to exhibit a finite number of peaks along the crack, one each half a wavelength in view of the standard res-
olution limit.

The paper itself is organized as follows. In Section 2, the direct scattering problem is introduced and the far-field pattern
of the scattered field is described in some detail, here mostly for the sake of completeness since this material is classical now-
adays. In Section 3, where most novelty lies in, the factorization of the MSR matrix is carried out, interpreted, and the MUSIC-
type imaging algorithm which it enables us to derive is discussed briefly for both boundary conditions/polarizations. In Sec-
tions 4 and 5, a set of numerical results is proposed, such as spectra of MSR matrices, and images of one and two cracks, from
noiseless and noisy, discrete TM and TE data, such data being computed in rigorous fashion from the application of the
Nyström method or by alternative methods. A short conclusion follows.

A brief description of the present work can be found in the forthcoming conference paper [25]. Much more, as well as
other investigations of the retrieval of arc-like cracks in static and propagative regimes is in the thesis of the first author
[22]. Otherwise, let us refer to [8,9,11,17,18] as useful references that investigate the so-called linear sampling method,
as another imaging algorithm linked to the MUSIC one, being mentioned that a Tikhonov regularization appears to be re-
quired for any successful reconstruction. The relationship between the MUSIC and the linear sampling method is studied
in [10]. No attempt is made here to review that existing or potential linkage, whilst such references are acknowledged
not to be exhaustive on the issue of linear sampling.

2. Helmholtz equation and direct scattering problem

Let C � R2 be an oriented, piecewise smooth, non self-intersecting arc without cusp which describes the crack, i.e.,
1 Thi
C ¼ zðsÞ : s 2 ½�1;1�f g;
where z : ½�1;1� ! R2 is an injective piecewise C3 function (see sketch in Fig. 1), and let us henceforth assume that the said
crack is perfectly conducting.

First, let us consider the so-called Transverse Magnetic polarization case, letting u be the (single-component) electric field
that satisfies the two-dimensional Helmholtz wave equation
DuðxÞ þ k2uðxÞ ¼ 0 in R2 n C; ð1Þ
with strictly positive wave number k ¼ x ffiffiffiffiffiffilep
, letting e be the electric permittivity and l the magnetic permeability. The

field cannot penetrate into C, i.e., u satisfies the Dirichlet boundary condition
uðxÞ ¼ 0 on C: ð2Þ
Conversely, let us consider the Transverse Electric polarization case, letting u be the (single-component) magnetic field that
satisfies the two-dimensional Helmholtz wave Eq. (1) yet now with the following Neumann boundary condition on C:
@u
@m
ðxÞ ¼ 0 on C n zð�1Þ; zð1Þf g; ð3Þ
where mðxÞ is a unit normal vector to C at x.
Let us notice that the total field can always be decomposed as uðxÞ ¼ u0ðxÞ þ usðxÞ;u0ðxÞ ¼ eikh�x the given incident field for

incident direction h 2 S1, and usðxÞ the unknown scattered field, which is required to satisfy the Sommerfeld radiation
condition
s would correspond as well to a sound-soft or to a sound-hard screen in a fluid-like medium insonified by compressional waves.
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lim
xj j!1

ffiffiffiffiffi
xj j

p @usðxÞ
@ xj j � ikusðxÞ

� �
¼ 0;
uniformly into all directions x̂ ¼ x
xj j. The determination of us is but a special case of the following problem
DusðxÞ þ k2usðxÞ ¼ 0 in R2 n C; ð4Þ
that satisfies the Dirichlet boundary condition
usðxÞ ¼ f ðxÞ on C; ð5Þ
or the Neumann boundary condition
@us

@m
ðxÞ ¼ f ðxÞ on C; ð6Þ
and the Sommerfeld radiation condition. Let us remind that from the boundary conditions (2) and (3), we can set
f ðxÞ ¼ �u0ðxÞ and f ðxÞ ¼ � @u0

@m ðxÞ for the boundary conditions (5) and (6), respectively. Let us notice at this stage that the
above works only for ‘smooth’ arcs, and we should refer to [21] for a broader and thoughtful coverage of electromagnetic
scattering by general arcs, including ours.

2.1. Existence and uniqueness of the solution

Let us first consider the case of the Dirichlet boundary problem (TM polarization). The author in [18] establishes the exis-
tence of a solution by searching it in the form of a single-layer potential
usðxÞ ¼
Z

C
Uðx; yÞuðy; hÞdy for x 2 R2 n C; ð7Þ
with the two-dimensional fundamental solution to the Helmholtz equation
Uðx; yÞ ¼ i
4

H1
0ðk x� yj jÞ for x–y;
expressed in terms of the Hankel function H1
0 of order zero and of the first kind. The unknown density u is assumed to be of

the form
uðx; hÞ ¼
euðx; hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� zð�1Þj j x� zð1Þj j
p for x 2 C n zð�1Þ; zð1Þf g:
Here, eu is a continuous function on C and zð�1Þ and zð1Þ are end-points of C. Then, for 1 < p < 2;u 2 LpðCÞ and therefore,
the single-layer potential (7) is continuous throughout R2. Hence, if the density u is a solution to the integral equation
Z

C
Uðx; yÞuðy; hÞdy ¼ f ðxÞ for x 2 C; ð8Þ
then the potential us of (7) solves the exterior Dirichlet problem. From [18, Theorem 2.5], the author shows that, if 0 < a < 1,
for boundary condition f 2 C1;aðCÞ in (5), the Dirichlet problem for the exterior of an arc has a unique solution and this solu-
tion depends continuously on the boundary data.

For the Neumann boundary problem, the author in [19] establishes the existence of a solution by searching it as a double-
layer potential
usðxÞ ¼
Z

C

@U
@m
ðx; yÞwðy; hÞdy for x 2 R2 n C: ð9Þ
For 0 < a < 1, the unknown density w is contained within a space of locally Hölder continuously differentiable functions on C
which is
C1;a
loc C n zð�1Þ; zð1Þf gð Þ ¼ w 2 CðCÞ : wðzð�1Þ; hÞ ¼ wðzð1Þ; hÞ ¼ 0;w0 2 L1ðCÞ

n o
;

where the prime indicates differentiation with respect to the arc length. By using the jump relations for the double-layer
potentials, if the density w is a solution to the hypersingular integral equation of the first kind
@

@m

Z
C

@U
@m
ðx; yÞwðy; hÞdy ¼ f ðxÞ for x 2 C n zð�1Þ; zð1Þf g; ð10Þ
then the potential us of (9) solves the exterior Neumann problem. Denoting sðxÞ as tangent vector to C n zð�1Þ; zð1Þf g at x,
(10) becomes Maue’s identity
f ðxÞ ¼ @

@m

Z
C

@U
@m
ðx; yÞwðy; hÞdy ¼

Z
C

@U
@s
ðx; yÞ @w

@s
ðy; hÞdyþ k2

Z
C
Uðx; yÞwðy; hÞmðxÞ � mðyÞdy;
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for x 2 C n zð�1Þ; zð1Þf g. Let us note that, from the above identity, the degree of singularity in the hypersingular integral Eq.
(10) has been reduced. In [19, Theorem 2.3], the author shows that the Neumann problem for the exterior of an arc has a
unique solution.

2.2. The far-field pattern

Now, we easily derive an integral representation of the far-field pattern of the scattered field us. Since, for densities u, the
first derivatives of the total field u can be extended as a continuous function from R2 n C to R2 n zð�1Þ; zð1Þf g with different
limiting values on both sides of C by using the jump relations for the single-layer potentials. In particular, if we denote mðxÞ
as a normal vector to C at x, the limits of the following quantities exist
uðxÞ ¼ lim
h!þ0

u x� hmðxÞð Þ

@u�
@m
ðxÞ ¼ lim

h!þ0
mðxÞ � ru x� hmðxÞð Þ

�uðx; hÞ ¼ @uþ
@m
ðxÞ � @u�

@m
ðxÞ

� wðx; hÞ ¼ uþðxÞ � u�ðxÞ;
for all x 2 C n zð�1Þ; zð1Þf g.
So, for every incident field u0, the total field u that satisfies a Dirichlet boundary condition has the integral representation
uðxÞ ¼ u0ðxÞ þ usðxÞ ¼ u0ðxÞ þ
Z

C
Uðx; yÞuðy; hÞdy ¼ u0ðxÞ �

Z
C

@uþ
@m
ðyÞ � @u�

@m
ðyÞ

� �
Uðx; yÞdy;
for x 2 R2 n C.
The far-field pattern u1 of the scattered field us is defined on the two-dimensional unit circle S1. It can be represented as
usðxÞ ¼
eikjxjffiffiffiffiffi
jxj

p u1ðx̂; hÞ þ O
1
jxj

� �� �
;

uniformly in all directions x̂ ¼ x
jxj and jxj ! 1. From the above representation and the asymptotic formula for the Hankel

function [12], we conclude that the far-field pattern for the scattering of an incident field u0 from a perfectly conducting
crack C is given by
u1ðx̂; hÞ ¼ � eip4ffiffiffiffiffiffiffiffiffi
8pk
p

Z
C

e�ikx̂�y @uþ
@m
ðyÞ � @u�

@m
ðyÞ

� �
dy; x̂ 2 S1

¼ eip4ffiffiffiffiffiffiffiffiffi
8pk
p

Z
C

e�ikx̂�yuðy; hÞdy; ð11Þ
for x̂ 2 S1.
Similarly, the far-field pattern for the Neumann boundary problem can be derived asffiffiffiffiffiffiffir
u1ðx̂; hÞ ¼ k
8p

e�ip4

Z
C

x̂ � mðyÞe�ikx̂�y uþðyÞ � u�ðyÞf gdy

¼
ffiffiffiffiffiffiffi
k

8p

r
e�ip4

Z
C

x̂ � mðyÞe�ikx̂�ywðy; hÞdy; ð12Þ
for x̂ 2 S1.

3. MUSIC-type algorithm for imaging of cracks

In this section, we apply the far-field pattern formulas (11) and (12) to build up a MUSIC-type algorithm for non-iterative
imaging of cracks, refer to [14,15,23] for instance.

First, let us consider the Dirichlet boundary condition case. If we exclude the constant eip4ffiffiffiffiffiffi
8pk
p from formula (11), the MSR

matrix K can be written as
K ¼
Z

C
EDðyÞFDðyÞT dy; ð13Þ
where EDðyÞ is the illumination vector
EDðyÞ ¼ e�ikx̂1 �y; e�ikx̂2 �y; . . . ; e�ikx̂N �y
� �T jx̂j¼�hj

¼ eikh1 �y; eikh2 �y; . . . ; eikhN �y
� �T

; ð14Þ
and where FDðyÞ is the resulting density vector
FDðyÞ ¼ uðy; h1Þ;uðy; h2Þ; . . . ;uðy; hNÞð ÞT : ð15Þ
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Here, x̂j
	 
N

j¼1 � S1 is a discrete finite set of observation directions and hlf gN
l¼1 � S1 is the same number of incident directions.

Formula (13) is a factorization of the MSR matrix that separates the known incoming plane wave information from the
unknown information. The range of K is determined by the span of the ED corresponding to the C, i.e., we can define a signal
subspace by using a set of left singular vectors of K (see [14, Section 3]).

Second, let us consider the Neumann boundary condition case. Likewise eliminating the constant
ffiffiffiffi
k

8p

q
e�ip4 from formula

(12), the MSR matrix K reads asZ

K ¼

C
ENðyÞFNðyÞT dy; ð16Þ
where ENðyÞ is the illumination vector
ENðyÞ ¼ � x̂1 � mðyÞe�ikx̂1 �y; x̂2 � mðyÞe�ikx̂2 �y; . . . ; x̂N � mðyÞe�ikx̂N �y
� �T jx̂j¼�hj

¼ h1 � mðyÞeikh1 �y; h2 � mðyÞeikh2 �y; . . . ; hN � mðyÞeikhN �y
� �T

; ð17Þ
and where FNðyÞ is the corresponding density vector
FNðyÞ ¼ wðy; h1Þ;wðy; h2Þ; . . . ;wðy; hNÞð ÞT : ð18Þ
Formula (16) is a factorization of the MSR matrix that, like with the Dirichlet boundary condition case, separates the known
incoming plane wave information from the unknown information. The range of K is determined by the span of the EN cor-
responding to the C, i.e., we can define a signal subspace by using a set of left singular vectors of K.

Let us assume that the crack is divided into M different segments of size of order half the wavelength k
2. Having in mind

the Rayleigh resolution limit from far-field data, any detail less than one-half of the wavelength cannot be seen, and only one
point at each segment is expected to contribute at the image space of the response matrix K (see [2,3,7] for instance). Each of
these points, say xj for j ¼ 1;2; . . . ;M, can in principle be imaged through the standard MUSIC-type imaging. The resolution of
the image provided by this technique is of the order of the half-wavelength.

First, let us consider the imaging algorithm for the Dirichlet boundary condition. Let the singular value decomposition of
the matrix K be K ¼ VSWT , where V ;W 2 CN�N are unitary matrices and where S is a real nonnegative diagonal matrix with
components k1; k2; . . . ; kN which satisfies
k1 P k2 P � � �P kM > 0 and kj ¼ 0 for j ¼ M þ 1;M þ 2 . . . ;N:
Alternatively, kj, for j ¼ M þ 1;M þ 2; . . . ;N, could merely be very small, below the noise level of the system represented by K.
Then, the first M columns of the matrix V ; v1;v2; . . . ;vMf g, provide an orthonormal basis for K and the rest of the matrix
V ; vMþ1;vMþ2; . . . ;vNf g, provides a basis for the null (or noise) space of K. So, one can form the projection onto the null (or
noise) subspace: this projection is given explicitly by
Pnoiseðf Þ ¼
X
j>M

v jvT
j f : ð19Þ
For any point x 2 R2, let us define a vector gðxÞ 2 CN as
gðxÞ ¼ eikh1 �x; eikh2 �x; . . . ; eikhN �x
� �T

: ð20Þ
Then there exists n0 2 N such that for any N P n0, the following statement holds [4–6,16]:
gðxÞ 2 RangeðKÞ if and only if x 2 x1; x2; . . . ; xMf g:
It means that if a point x satisfies x 2 x1; x2; . . . ; xMf g then PnoiseðgðxÞÞk k ¼ 0. Thus an image of xj; j ¼ 1;2; . . . ;M, follows from
computing
WðxÞ ¼ 1
PnoiseðgðxÞÞk k : ð21Þ
The resulting plot of this estimator is expected to exhibit peaks of high magnitude at the sought xj 2 C.
The imaging algorithm for the Neumann boundary condition case is very similar to the previous one (see [14, Section 4]

also). For any point x 2 R2, we define a vector gðxÞ 2 CN that reads, instead of (20), as
gðxÞ ¼ h1 � mðxÞeikh1 �x; h2 � mðxÞeikh2 �x; . . . ; hN � mðxÞeikhN �x
� �T

: ð22Þ
Since the unit normal mðxÞ is still unknown, for each point x of the search domain, we use a set of directions ml for
l ¼ 1;2; . . . ; L and we choose mlðxÞ which is to maximize
WðxÞ ¼ 1
Pnoise gðxÞð Þk k : ð23Þ
The resulting plot of this estimator is again expected to exhibit high peaks at the sought xj 2 C.
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4. Numerical examples: Dirichlet boundary condition – TM
In this section, we present some numerical examples obtained with the MUSIC-type algorithms for imaging arc-like
cracks satisfying the Dirichlet boundary condition (TM polarization). Throughout this section, the applied wave number is
taken of the form k ¼ 2p

k ; here k is the given wavelength, which will be varied between a low-frequency one of k ¼ 1 and
a high-frequency one of k ¼ 0:1.

Three Cj are chosen for illustration:
Fig. 2.
and a 0
a 0.5 w
C1 ¼ s
2 ; 0:3
� �

: s 2 ½�1;1�
	 


;

C2 ¼ s; 1
2 cos sp

2 þ 1
5 sin sp

2 � 1
10 cos 3sp

2

� �
: s 2 ½�1;1�

	 

;

C3 ¼ 2 sin s
2 ; sin s

� �
: s 2 p

4 ;
7p
4

� �	 

;

and the search domain X is taken as X ¼ ½�1;1� � ½�1;1� for the imaging of C1 and C2 and ½�1;3� � ½�2;2� for the one of C3.
For each z 2 X, the step size of z is taken of the order of 0.02. As for the observation directions hl, they are taken as
hl ¼ cos
2pl
N

; sin
2pl
N

� �
for l ¼ 1;2; . . . ;N: ð24Þ
It is worth mentioning that, since the reliable and efficient solution of the direct scattering problem indicated previously is
very important, all numerical data in this section (the elements u1ðhj; hlÞ for j; l ¼ 1;2; . . . ;N of the dataset K) are generated
by the Nyström method for both the Dirichlet and Neumann boundary conditions as presented in [18, formula (4.11)] and
[19, p. 354], respectively. After obtaining the dataset, the singular value decomposition of K ¼ VSWT is performed. Unfortu-
nately, in contrast with the theoretical analysis, the computed singular values do not separate neatly between non-zero and
zero sets, refer to bottom row of Fig. 2 (see [14, Figure 2] for an extended target case). This phenomenon is also in contrast
with most results on the distribution of singular values presented in [4]. So, a careful thresholding is required to discriminate
(Dirichlet boundary condition) Top: Distribution of log-scaled singular values of the matrix K (left) and map of WðxÞ (right), for N ¼ 12 incidences
.5 wavelength. Bottom: Distribution of log-scaled (left) and normalized (right) singular values of the matrix K respectively for N ¼ 20 incidences and
ave length when the crack is C1.
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the singular values that are significant of the signal subspace (and vectors spanning it) from those that are associated to the
noise subspace (and vectors spanning it). Once the singular values are computed, they are normalized with respect to the one
of maximum amplitude. A detailed discussion of this normalization has been made in [23, Section 4] and every distribution
of normalized singular values can be found in [22, Chapter 4].

4.1. Reconstruction of a single crack

Before starting this section, we make the following remarks.

Remark 4.1. Let us consider an image of C1. In Fig. 2, we observe that when the number N is not large enough, we can choose
the nonzero singular values without normalizing them, but the imaging is poor. For example, with N ¼ 12 and k ¼ 0:5, we
observe that the first seven singular values are well distinguished from the five, much weaker remaining ones (top left)
without normalizing the singular values. However, when we use seven singular values to discriminate the noise subspace
from the signal subspace, poor results appear (top right). When we increase N to 20 while keeping the same 0.5 wavelength,
this phenomenon disappears (bottom left). Hence, to get a suitable image, one has to take a large enough N and normalize
the singular values as well.
Remark 4.2. Instead of the scattered field dataset generated from the Nyström method, some authors introduce a similar
formulation involving the solution of a second-kind Fredholm integral equation along the crack, refer to [21, Chapter 3].
Numerical experimentation shows that images of a crack from data acquired by the Nyström method or from the ones cal-
culated via this alternative formulation are almost indistinguishable (see Fig. 3).

Let us first work with C1;K being collected for N ¼ 20 and N ¼ 32, and wavelengths k ¼ 0:4 and k ¼ 0:2, respectively. Dis-
tributions of the normalized singular values of K and maps of WðxÞ are displayed in Fig. 4.

Each time, a small finite number of singular values (6 at k ¼ 0:4;11 at k ¼ 0:2) emerges from the remaining, much
smaller ones, whilst images thereupon produced by projection onto singular vectors beyond the first 6 or 11 ones
Fig. 3. (Dirichlet boundary condition) Distribution of normalized singular values of the MSR matrix K (left column) and maps of WðxÞ (right column), for
N ¼ 32 incidences and a k ¼ 0:4 wavelength when the crack is C2. Dataset generated by the Nyström method introduced in [18] (top row) and another one
in [21] (bottom row).



Fig. 4. (Dirichlet boundary condition) Distributions of normalized singular values of the matrix K (left column) and maps of WðxÞ (right column), for N ¼ 20
incidences and a 0.4 wavelength (top row), for N ¼ 32 incidences and a 0.2 wavelength (bottom row) when the crack is C1.
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appear excellent, a small number of peaks being obtained, each peak being observed to be k=2 away from the next
one. No problem of discrimination is faced, and this in effect remains true whenever a curve of zero curvature is to
be imaged, whatever be its type of contrast and the conditions of illumination (if the ratio N=M is kept properly
large).

Opposite to the penetrable inclusion case as dealt with in [23], although the crack is not anymore a straight line, the dis-
crimination for a curved crack is still obvious. As an example, let us consider the image of C2, here using N ¼ 16 and N ¼ 64
incident directions and a wavelength of 0:8 and 0:2 respectively, refer to Fig. 5.

In addition, the discrimination for a complicated crack, though remaining patent, is affected by unexpected isolated peaks
of large magnitude. An image of C3, here using N ¼ 32 incident directions and a wavelength k ¼ 0:7, shows that phenomenon
in Fig. 6.

We have already examined and discussed a similar case from [23]. However, when we increase the number of illumina-
tions to N ¼ 48, these peaks do not disappear from the image. Hence, to eliminate them, we have to adopt a much smaller
threshold of 0.1 or 0.01, refer to Fig. 7. Comparing with Fig. 6, we observe that this eliminates all or almost all isolated peaks
from the images and offers a higher resolution overall.

Now, we apply the algorithm to an oscillating crack. The configuration is the same as previously save the search domain
X ¼ ½�1:5;1:5� � ½�1:5;1:5�. Two Cj are chosen for illustration (see Fig. 8):
C4 ¼ ðs;0:5s2 þ 0:1 sinð4pðsþ 1ÞÞ : s 2 ½�1;1�
	 


;

C5 ¼ ðs;0:5s2 þ 0:05 sinð20pðsþ 1ÞÞ � 0:01 cosð15psÞ : s 2 ½�1;1�
	 


:

Let us consider C4. Imaging results are displayed in Fig. 9 at k ¼ 0:6 and k ¼ 0:2. The imaging is rather coarse at
the low wavelength, better at the high one. The threshold looks convenient, whilst a high value of N is to be taken
as expected.

For the case of a more oscillating crack C5, the results are coarse, as is seen in Fig. 10, but they can be considered as an
initial guess close to the true one of a Newton-type iteration method in line with [18].



Fig. 5. (Dirichlet boundary condition) Distributions of normalized singular values of the matrix K (left column) and maps of WðxÞ (right column), for N ¼ 16
incidences and a 0.8 wavelength (top row), for N ¼ 64 incidences and a 0.2 wavelength (bottom row) when the crack is C2.

Fig. 6. (Dirichlet boundary condition) Distribution of normalized singular values of the matrix K (left) and map of WðxÞ (right), for N ¼ 32 incidences and a
0.7 wavelength when the crack is C3.
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4.2. Extension to multiple cracks

Both the mathematical configuration and the numerical analysis could be extended in somewhat straightforward fashion
to the case of multiple inclusions. We will not present the derivation herein and simply provide examples of imaging via the
MUSIC-type algorithm in several figures.



Fig. 7. Same as Fig. 6 except that one has adopted a 0.1 threshold (left) and a 0.01 threshold (right).

Fig. 8. Shape of C4 (left) and C5 (right).

Fig. 9. (Dirichlet boundary condition) Maps of WðxÞ (right column), for N ¼ 36 incidences and k ¼ 0:6 wavelength (left) and for N ¼ 64 and k ¼ 0:2 (right),
when the crack is C4.

8102 W.K. Park, D. Lesselier / Journal of Computational Physics 228 (2009) 8093–8111
Let us notice that the elements u1ðhj; hlÞ for j; l ¼ 1;2; . . . ;N of dataset K are generated from the Nyström method now
applied to scattering by more than one crack.

Let us consider the following cracks
Ca ¼ r1 [ r2;

Cb ¼ r3 [ r4;



Fig. 10. (Dirichlet boundary condition) Maps of WðxÞ for N ¼ 72 incidences and a 0.3 wavelength (left) and for N ¼ 160 incidences and a 0.1 wavelength
(right) when the crack is C5.

Fig. 11. (Dirichlet boundary condition) Maps of WðxÞ for N ¼ 28 incidences and a 0.5 wavelength (left), for N ¼ 48 incidences and a 0.3 wavelength (right)
when the crack is Ca .

Fig. 12. (Dirichlet boundary condition) Distribution of normalized singular values of the MSR matrix K (left) and map of WðxÞ (right) for N ¼ 24 incidences
and a k ¼ 0:8 wavelength when the crack is Ca .
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where
r1 ¼ ðs;�0:5ðs� 0:2Þ2 þ 0:5Þ : s 2 ð�0:7;0:3Þ
n o

;

r2 ¼ ðs; ðs� 0:2Þ3 þ ðs� 0:2Þ2Þ � 0:4 : s 2 ð�0:3; 0:7Þ
n o

;



Fig. 13. (Dirichlet boundary condition) Maps of WðxÞ for N ¼ 64 incidences and a 0.5 wavelength (left), for N ¼ 96 incidences and a 0.3 wavelength (right)
when the crack is Cb .

Fig. 14. (Dirichlet boundary condition) Same as Fig. 13 with 0.01 threshold.

Fig. 15. (Dirichlet boundary condition) Maps of WðxÞ for N ¼ 48 incidences and a 0.3 wavelength when the crack is Ca (left) and for N ¼ 96 incidences and a
0.3 wavelength when the crack is Cb (right). Dataset generated by the method introduced in [21] (compare to Figs. 11 and 13).

8104 W.K. Park, D. Lesselier / Journal of Computational Physics 228 (2009) 8093–8111
r3 ¼ s� 0:5;
1
2

cos
sp
2
þ 1

5
sin

sp
2
� 1

10
cos

3sp
2

� �
: s 2 ½�1;1�

� �
;

r4 ¼ 2 sin
s
2
þ 0:5; sin s

 �
: s 2 p

4
;
7p
4

� �� �
:
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Let us image Ca;K being collected for N ¼ 28 and N ¼ 48, and the wavelengths of operation k ¼ 0:5 and k ¼ 0:3, respec-
tively. Corresponding images are displayed in Fig. 11. The discrimination is still obvious and images are as hoped for.

Remark 4.3. When we choose as the number of incident directions, N ¼ 24, and as wavelength k ¼ 0:8, some isolated peaks
of large magnitude appear between two cracks. In the several examples in the single-crack case, some disappear when we
adopt a large number of illuminations or a 0.1 (or 0.01) threshold but via the previous methods, the one in Fig. 12 does not.
To eliminate it, we must operate at a much smaller wavelength. In this example, this peak still shows up when the
wavelength is larger than 0.6 and disappears when it becomes smaller than about 0.5, i.e., we now obtain proper images,
refer to Fig. 11.

When the shape of cracks is getting complex, the discrimination is still obvious but unexpected isolated peaks appear. As
an example, let us image Cb (refer to Fig. 13) at k ¼ 0:5 and k ¼ 0:3.
Fig. 16. (Dirichlet boundary condition) The distribution of log-scaled (top row) and normalized (center row) singular values of the matrix K and maps of
WðxÞ (bottom row) without noise (left column) and 10 dB random noise (right column) for all points x 2 X for N ¼ 32 incidences and a 0.4 wave length
when the crack is C2.



Fig. 17. (Dirichlet boundary condition) The distribution of log-scaled (top row) and normalized (center row) singular values of the matrix K and maps of
WðxÞ (bottom row) without noise (left column) and 20 dB random noise (right column) for all points x 2 X for N ¼ 32 incidences and a 0.7 wave length
when the crack is C3.
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Similarly with the imaging of C3 (see Fig. 7), we can eliminate these isolated peaks, i.e., proper images can be obtained, by
adopting a 0.1 or 0.01 threshold (see Fig. 14).

We bring an end to this part with the following remark.

Remark 4.4. Similarly with the single-crack case, we can produce images from far-field data computed by the solution
algorithm in [21, Chapter 4], refer to Fig. 15. By comparing the bottom row of Fig. 11 and top row of Fig. 15, and the bottom
row of Fig. 13 and the same row of Fig. 15, such images look much like those from data acquired by the Nyström method.
4.3. Robustness with respect to noise

Let us assume that the collected far-field data is perturbed by a white Gaussian random noise added to the unperturbed
data. If the signal-to-noise ratio of the data is large enough, one is able by SVD to extract proper information or the principal
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components from the data, refer to, e.g., [14, Section 3.6]. Hence, if we successfully discriminate the signal subspace, the pro-
posed algorithm will be quite robust with respect to noise.

In order to illustrate the robustness of the algorithm, let us image C2 with 10 dB random noise. Typical results are in
Fig. 16 at k ¼ 0:4. Although the distribution of log-scaled singular values is significantly different and some blurring appears
Fig. 18. (Dirichlet boundary condition) Maps of WðxÞwithout noise (left) and 10 dB random noise (right) for N ¼ 48 incidences and a 0.3 wave length when
the crack is Ca.

Fig. 19. (Dirichlet boundary condition) Maps of WðxÞwithout noise (left) and 20 dB random noise (right) for N ¼ 64 incidences and a 0.5 wave length when
the crack is Cb .

Fig. 20. (Neumann boundary condition) Distribution of normalized singular values of the matrix K (left) and map of WðxÞ (right), for N ¼ 12 incidences and
a 0.5 wavelength when the crack is C1.
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in the image, we easily find proper singular values and obtain an accurate image via the normalizing method. For the case of
C3 with 20 dB random noise, a similar phenomenon occurs, refer to Fig. 17.
Fig. 21. (Neumann boundary condition) Maps of WðxÞ for N ¼ 16 incidences and a 0.5 wavelength (left) and for N ¼ 32 incidences and a 0.2 wavelength
(right) when the crack is C1.

Fig. 22. (Neumann boundary condition) Distribution of normalized singular values of the matrix K (left) and map of WðxÞ (right), for N ¼ 20 incidences and
a 0.8 wavelength when the crack is C2.

Fig. 23. (Neumann boundary condition) Maps of WðxÞ for N ¼ 36 incidences and a 0.4 wavelength when the crack is C2. 0.1 (left) and 0.01 (right) threshold
used for imaging.
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This is verified as well for the multiple crack case. Typical images of Ca with 10 dB and Cb with 20 dB random noise are
shown in Figs. 18 and 19, respectively.
Fig. 24. (Neumann boundary condition) Maps of WðxÞ for N ¼ 48 incidences and a 0.7 wavelength (left) and for N ¼ 96 and a 0.3 wavelength (right) when
the crack is C3. 0.01 threshold used for imaging.

Fig. 25. (Neumann boundary condition) Maps of WðxÞ for N ¼ 32 incidences and a k ¼ 0:4 wavelength (left) and for N ¼ 64 incidences and a k ¼ 0:2
wavelength (right) when the crack is C2. Dataset generated by the solution algorithm introduced in [21] (compare to Fig. 23).

Fig. 26. (Neumann boundary condition) Maps of WðxÞ for N ¼ 32 incidences and a 0.4 wavelength (left) and for N ¼ 64 incidences and a 0.2 wavelength
(right) when the crack is Ca.



Fig. 27. (Neumann boundary condition) Maps of WðxÞ for N ¼ 48 incidences and a 0.7 wavelength (left) with L ¼ 64 normal directions and for N ¼ 128
incidences and a 0.3 wavelength (right) with L ¼ 128 normal directions when the crack is Cb .
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5. Numerical examples: Neumann boundary condition – TE

In this section, we present some imaging results for the Neumann boundary condition. The configuration is the same as
previously and we use a set of fixed directions ml as
ml ¼ cos
2pl

L
; sin

2pl
L

� �
for l ¼ 1;2; . . . ; L:
Throughout this section, we use L ¼ 16 and 32 directions for the imaging of C1 and C2 and of C3, respectively. Let us empha-
size here that the fact that the direction normal to C is not known of us results in the slowness of the imaging, i.e., large
computational costs are needed (about 3 minutes are required to obtain the top row result of Fig. 21 and 30 to obtain the
one of Fig. 27 on a personal computer with 1.73 GHz dual-core pentium processor).

Now, we start up this section with the following remark.

Remark 5.1. Similarly with the Dirichlet boundary condition case, refer to Remark 4.1, when N is not large enough, the
image is coarse. For example, when we choose N ¼ 12 and as wavelength k ¼ 0:5, we observe that the first five normalized
singular values are well distinguished from the seven next. However, when we use five singular values to discriminate the
noise subspace from the signal subspace, poor results appear. Increasing N to 16 while keeping the same 0.5 wavelength
(see Fig. 20), this phenomenon is vanishing, refer to Fig. 21.

For imaging C1;K is collected for N ¼ 16 and N ¼ 32, and wavelengths k ¼ 0:5 and k ¼ 0:2, respectively. Maps of WðxÞ are
displayed in Fig. 21.

In contrast with the Dirichlet boundary condition case, see Fig. 5, when the crack is not anymore a straight line, a blurred
image appears, refer to Fig. 22. In order to improve it, we can use a larger wavelength and a 0.01 threshold. This can be ver-
ified in Fig. 23.

Let us consider the imaging of C3. Typical results are in Fig. 24 at k ¼ 0:7 and k ¼ 0:3. Let us notice that similarly with the
previous result, the imaging is rather coarse for the 0.1 threshold, better for the 0.01 threshold.

Remark 5.2. Similarly with the Dirichlet boundary condition case, we can generate images from far-field data computed by
the algorithm presented in [21, Chapter 3], refer to Fig. 25. By comparing to Fig. 23, such images look much like those built up
from data computed by the Nyström method.

Let us apply the algorithm to the imaging of two inclusions (skipping all mathematical details), once emphasized that the
dataset K is generated by solving the linear systems introduced in [21, Chapter 4]. A 0.01 threshold is adopted for higher res-
olution. We use L ¼ 32 directions for imaging Ca and L ¼ 64 and 128 directions for Cb, respectively.

Results for Ca are in Fig. 26, K being collected for N ¼ 32 and N ¼ 64, and for wavelengths k ¼ 0:4 and k ¼ 0:2, respec-
tively. The few copies of the crack which show up in the maps are of much lower amplitude than the true one. From the
images of Cb, refer to Fig. 27, we can verify this.

6. Conclusion

In this paper, we have proposed a non-iterative imaging algorithm for impenetrable, arc-like cracks modeled via a Dirich-
let or Neumann boundary condition (TM and TE polarization in two-dimensional electromagnetics) which is based on a fac-
torization of the MultiStatic Response matrix at a single frequency of operation and the use of a MUSIC cost functional.
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Numerical experimentation from synthetic data computed by rigorous solution methods (like Nyström’s) shows that this
algorithm is fast, stable and overall quite effective, particularly in the TM (Dirichlet) case, at a lesser degree in the TE (Neu-
mann) one, the case of limited views remaining to be appreciated carefully. The cracks are seen as a succession of peaks in a
map, one each half-a-wavelength away from the next, enabling us to distinguish them from their embedding medium. Also,
such a non-iterative imaging could fast provide initial guesses of a level-set evolution [1,13,24] or of a Newton-type algo-
rithm [7,18,20].

For achieving the best imaging of a crack with Neumann boundary condition, the mathematical formulation for the choice
of the normal direction on the crack still requires further investigation however.
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